Интегралы?

-Ага

Описываем изменение

 

  Первым испытанием для нас будет описание изменяющегося числа. Мы можем сказать: “Моя скорость менялась с 0 до 30 км/ч”.

  Это не совсем точно: как быстро она изменялась? Были ли изменения плавными?

Давайте будем точны: моя скорость в каждый момент времени равнялась удвоенному количеству секунд. В 1 секунду я двигался со скоростью 2 км/ч. Во 2 секунду скорость уже была 4 км/ч, в 3 секунду — уже 6 км/ч, и так далее:

  Вот теперь у нас есть хорошее описание, достаточно подробное, чтобы знать свою скорость в каждый момент времени. Формальное описание звучит как “скорость — это функция времени”, и оно означает, что мы можем взять любой момент времени (t) и узнать нашу скорость в тот момент (“2t” км/ч).

(Это, конечно, не дает ответа на вопрос, почему скорость и время связаны.

  Я могу ускоряться за счет гравитации, или ослик может толкать меня сзади. Мы всего лишь установили, что с изменением времени изменяется и скорость).

 

Наше произведение “расстояние = скорость × время”, возможно, лучше написать так:

 

расстояние = скорость(t) × t

 

где скорость (t) — это скорость в любой момент времени. В нашем случае скорость (t) = 2t, так что мы пишем:

 

расстояние = 2t × t

 

  Но это уравнение выглядит странно! “t” по-прежнему выглядит как единичный момент, который нужно выбирать (например, t=3 секунды), а значит и скорость (t) примет единичное значение (6 км/ч). А это нехорошо.

  При обычном умножении, мы можем взять одну скорость и предположить, что она одинаковая во всем прямоугольнике. Но изменяющаяся скорость требует совмещения скорости и времени по частям (секунда за секундой). В каждый момент ситуация может быть разной.

 

  Вот как это выглядит в большой перспективе:

• Обычное умножение (прямоугольник): берем расстояние, на которое мы продвинулись за секунду, предполагая, что эта величина была постоянной во все последующие секунды движения, и “масштабируем ее”.

• Интегрирование (по частям): рассматриваем время как ряд мгновений, в каждое из которых скорость разная. Суммируем расстояния, пройденные посекундно.

 Мы видим, что обычное умножение — это частный случай интегрирования, когда количество пройденных метров не изменяется.

 

Насколько большая эта “часть”?

 

  Насколько велика “часть”, при прохождении дистанции по частям? Секунда? Миллисекунда? Наносекунда?

  Ответ навскидку: достаточно мала, чтобы значение было постоянным все время. Нам не нужна идеальная точность.

  Более длинный ответ: такие понятия, как пределы, были придуманы, чтобы помочь в покусочном умножении. Принося пользу, они просто решают проблему и отвлекают от сути “объединения величин”. Мне очень не нравится, что пределы проходят в самом начале матанализа, еще перед тем, как студенты вникнут в проблему, которую они решают.

 

А что по поводу начала и конца?

 

  Скажем, мы исследуем интервал от 3 до 4 секунд.

Скорость вначале (3×2 = 6 км/ч) отличается от скорости в конце (4×2 = 8 км/ч). Так какое же значение мне брать при вычислении “скорости × время”?

  Решением будет разбить наши кусочки времени на достаточно мелкие отрезки (от 3.00000 до 3.00001 секунд), пока разность скоростей от начала до конца интервала будет для нас незначительной. Опять же, это более длинный разговор, но “поверьте мне”, что это временной отрезок, который делает разницу незначительной.

  На графике представьте, что каждый интервал — это одна точка на прямой. Вы можете нарисовать ровную линию к каждой скорости, и ваша “площадь” будет представлять собой множество отрезков, которое и будет измерять умножение.

Где же “часть”, и каково ее значение?

Разделение части и ее значения далось мне нелегко.

“Часть” — это интервал, который мы рассматриваем (1 секунда, 1 миллисекунда, 1 наносекунда). “Позиция” — это то, где начинается секундный, миллисекундный или наносекундный интервал. Значение — это наша скорость в той позиции.

Например, рассмотрим интервал от 3.0 до 4.0 секунд:

• “Ширина” отрезка времени составляет 1.0 секунду

• Позиция (начальное время) равно 3.0

• Значение (скорость(t)) — это скорость(3.0) = 6.0 км/ч

 

  Опять же, матанализ учит нас сокращать интервал до тех пор, пока разница между значениями в начале и конце интервала будет на столько мала, что ею можно пренебречь, считая этот интервал "точкой". Не выпускайте из вида большую картинку: мы умножаем набор частей.

 

Понимание записи интеграла

 

 У нас есть здравая идея “покусочного умножения”, но мы никак не можем ее выразить. “Расстояние = скорость(t) × t” все еще выглядит, как обычное уравнение, где t и скорость(t) принимают одно единственное значение.

В матанализе мы пишем это соотношение как

 

расстояние = ∫скорость(t)dt

 

• знак интеграла (s-образная кривая) означает, что мы умножаем покусочно и суммируем значения в одно.

• dt представляет временной “интервал”, который мы рассматриваем. Его называют “дельта t” а не “d раз по t”.

• t представляет положение dt (если dt — это промежуток от 3.0 до 4.0, то t равно 3.0)

• скорость(t) — это значение, на которое мы умножаем (скорость(3.0) = 6.0))

У меня есть парочка претензий к этой записи:

• То, как здесь используются буквы, немного смущает. “dt” выглядит как “d раз по t” в отличие от любого уравнения, которое вы ранее видели.

• Мы пишем скорость(t) × dt, вместо скорость(t_dt) × dt. Последний вариант четко указывает, что мы исследуем “t” на конкретном участке “dt”, а не какое-то глобальное “t”

• Вы часто встретите ∫скорость(t), без dt. Это вообще помогает легко забыть, что мы выполняем покусочное умножение двух элементов.

Похоже, уже поздно менять форму записи интегралов. Просто запомните эту идею насчет “умножения” чего-то, что изменяется.

Как это понимать

Когда я вижу вот это:

 

расстояние = ∫скорость(t)dt

 

  Я думаю “Расстояние равно скорости t раз (читая левую часть первой) или “совместите скорость и время, чтобы получить расстояние” (читая правую часть первой).

В уме я перевожу “скорость(t)” как скорость и “dt”, и это превращается в умножение, при условии, что скорости позволено изменяться. Представление интегрирования подобным образом помогает мне сконцентрироваться на том, что на самом деле происходит (“Мы совмещаем скорость и время, чтобы получить расстояние!”) вместо зацикливания на деталях действия.

 

Онлайн калькулятор неопределенных интегралов

Хау ту юз:

В верхнем окошке вместо sin(x)/x введите функцию, предел которой надо найти. В нижнее окошко введите число, к которому стремится х и нажмите кнопку Calcular, получите искомый предел.

©2k18 all rights reserved otvechayu

Designed by Gleb

www.000webhost.com